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DERIVATION OF MEMORY FUNCTION

FROM ITS EQUATION OF MOTION
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A new form of Memory Function (MF) appearing in the Mori’s formalism has been derived using plausible
approximations. In addition to the fact that present form of MF satisfies sum-rules upto sixth order, it has
special characteristic of presence of one more adjustable parameter. It is also found that the present form
of MF behaves as sech�(bt) under suitable conditions. The utility of the present MF is exemplified by studying
time evolution of velocity auto correlation function and transport coefficients of Lennard–Jones fluids.
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1. INTRODUCTION

A considerable amount of work has been carried out in recent years to study the time
evolution of Time-Correlation Functions (TCFs) and transport coefficients of fluids.
The TCFs can be studied theoretically through Mori’s equation [1–3]. The role of
Mori’s Memory Function (MF) formalism in the study of transport and dynamical
properties of fluids is of considerable importance as it allows to avoid difficult calcula-
tions of the exact TCF for a given realistic system. The exact calculation of TCF is
impossible for a fluid as it involves a many-body problem. So reduction of the problem
of studying TCF to the calculation of the appropriate MF is an important step in the
theoretical analysis of atomic motion in fluids. Since the exact microscopic calcula-
tion of MF is not yet feasible, in general, a simple approximation to the MF can be
made which preserves a number of important properties of TCF irrespective of the
approximation introduced for MF. Therefore, quite a few number of phenomenological
forms [4–10] of MF have been proposed in the past. These include functions like
Gaussian [2], simple exponential, square of hyperbolic secant and hyperbolic secant
[4–6] to evaluate the transport coefficients of classical Lennard–Jones (LJ) fluids.
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We have recently proposed a MF [11], which was found to yield quite satisfactory
results for the calculation of transport coefficients over a wide range of densities and
temperatures. The form of MF was a function of density and temperature of the
system, which we derived from Mori’s equation itself by proposing a plausible ansatz
for the third order MF. Following a similar procedure, we now put forward a new
form of MF in the present work. The resulting form of the MF satisfies the first six
sum-rules. This new form of the MF in addition to satisfying sum-rules up to sixth
order has an additional parameter. The utility of the presently derived MF has been
exemplified by studying the time development of Velocity Auto-Correlation Function
(VACF) and self-diffusion coefficient of LJ fluids. The results obtained have been com-
pared with Molecular Dynamics (MD) Simulation results [12,14]. To determine the
shear viscosity, �, and thermal conductivity, �, of the fluids with the knowledge of
sum-rules [4] up to fourth order only, we apply similar approximations at one stage
lower in Mori’s continued fraction. This, instead of providing an expression for the
MF, directly yields a functional form of the TCF. This functional form has been
used to calculate � and � of LJ fluids. The results are compared with non-equilibrium
MD results [12].

The lay out of the article is as follows: in Section 2 we present the derivation of the
new form of the MF. In Section 3, the results are discussed.

2. THEORY

Transport coefficients can be written as a time integral of an appropriate TCF with the
help of a Green–Kubo relation given as

� ¼ K

Z 1

0

CðtÞ dt, ð1Þ

where � represents any transport coefficient, C(t) is an appropriate TCF and K is some
thermodynamic quantity. In particular, � would represent the self-diffusion coefficient
when C(t) represents the VACF, and � shall represent shear viscosity and thermal con-
ductivity when C(t) is the transverse Stress Auto-Correlation (TSC) function and
Energy Current Density (ECD) correlation function, respectively. Mori’s equation of
motion which determines the evolution of a given TCF, C(t) is given as

dCðtÞ

dt
þ

Z t

0

M1ðt� �ÞCð�Þ d� ¼ 0, ð2Þ

where M1(t) is the first order MF. The M1(t) satisfies an equation similar to Eq. (1) i.e.,

dM1ðtÞ

dt
þ

Z t

0

M2ðt� �ÞM1ð�Þ d� ¼ 0: ð3Þ

568 S. SINGH et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



Writing M2(t) in terms of M3(t) in the same way as that in Eq. (2) and using it in the
time derivative of Eq. (2) we obtain

d2M1ðtÞ

dt2
þ �2M1ðtÞ þ

Z t

0

M3ðt� �Þ
dM1ð�Þ

d�
d� ¼ 0, ð4Þ

with �2¼M2(0). This equation is still an exact relation. Now we make use of an
approximation to write M3(t� �) as a product of two functions of t and �.

M3ðt� �Þ ! M3ðtÞf ðM1ð�ÞÞ

¼ M3ðtÞ
M�

1 ð�Þ

M�
1 ð0Þ

ð5Þ

This approximation is exact for �¼ 0 and provides a correction to Markovian
approximation for �<t. Writing M3(t� �) as a product of two functions implies that
for a function even in time, coupling between t and � is ignored, which may be good
approximation for a system where long time dynamics is not all that significant.
Using Eqs. (4) and (5) we obtain the following expression

€MM1ðtÞ þ �2M1ðtÞ þM3ðtÞ
ðM�þ1

1 ðtÞ �M�þ1
1 ð0ÞÞ

ð�þ 1ÞM�
1 ð0Þ

¼ 0: ð6Þ

We further assume the following form of M3(t)

M3ðtÞ ¼ A
M�þ2

1 ðtÞ

M�þ2
1 ð0Þ

þ B
M1ðtÞ

M1ð0Þ
: ð7Þ

This approximation is similar to ideas used in super cooled liquids and glass transition
theory based on feedback phenomenon [13]. From Eqs. (6) and (7) we obtain

€MM1ðtÞ þ �2 �
B

�þ 1

� �
M1ðtÞ þ

ðB� AÞM�þ2
1 ðtÞ

ð�þ 1ÞM�þ1
1 ð0Þ

þ
AM2�þ3

1

ð�þ 1ÞM2�þ2
1 ð0Þ

¼ 0: ð8Þ

One of the solution of this equation is given by

M1ðtÞ ¼
M1ð0Þð1þ �Þ1=ð�þ1Þ

ð1þ � coshðktÞÞ1=ð�þ1Þ
, ð9Þ

where

k ¼ ½ð�þ 1ÞðB� �2ð�þ 1ÞÞ�1=2,

� ¼
�2

B� �2ð�þ 2Þ
,
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and

B ¼
�2ð�þ 2Þð�þ 3Þ � �3

ð�þ 1Þ
,

which is true for � not equal to �1. In above equations and what follows, �n are related
to sum-rules of the corresponding TCF through following relations

�0 ¼ C0, �1 ¼
C2

C0
, �2 ¼

C4

C2
�
C2

C0
, �3�2 ¼

C6

C2
�

C4

C2

� �2

,

where C0, C2, C4 and C6 are zeroth, second, fourth and sixth order sum-rules of
corresponding TCF, C(t), respectively. Equation (9) is a new form of MF and satisfies
sum-rules exactly upto sixth order and still has an additional parameter �. Thus the
parameter � will not affect the short time properties of the TCF.

For �¼ 1 the Eq. (9) reduces to the following expression

M1ðtÞ ¼ �1sech
�

ffiffiffiffi
�2
�

r
t

 !
, ð10Þ

with �¼ 2/(�þ 1). This is the form of MF derived by us [11] earlier. Further for �¼ 1,
Eq. (9) reduces to the expression gives as

M1ðtÞ ¼
M1ð0Þð1þ �Þ1=2

½1þ � coshðktÞ�1=2
, ð11Þ

with

k ¼ ð8�2 � �3Þ
1=2,

and

� ¼
2�2

6�2 � �3
:

It may be noted that for �3¼ 4�2, � becomes unity and Eq. (11) provides an expression
of M1(t) given as

M1ðtÞ ¼ �1sech
ffiffiffiffi
�2

p
t

� �
: ð12Þ

Thus the MF, given by Eq. (9) can be thought of as modification over MF given by
Eqs. (10) and (12), which have been frequently used. The MF given by Eq. (9) has
an advantage over Eqs. (10) and (12), as it has an additional parameter �.
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In order to study time dependence of C(t), we use the Fourier–Laplace transform
~CCð!Þ of C(t) which can be written as

~CCð!Þ ¼ �
Cðt ¼ 0Þ

!þ ~MM1ð!Þ
, ð13Þ

where ~MM1ð!Þ is the Fourier–Laplace transform of M1(t). The expression for C(t) in
terms of its spectral function, f ð!Þ ¼ 2 ~CC00ð!Þ ¼ 2

R1
0 CðtÞcosð!tÞ dt is given as

CðtÞ ¼
1

	

Z 1

0

cosð!tÞ f ð!Þ d!: ð14Þ

Using definition of f (!) and Eq. (13) we can write the expression of C(t) given as

CðtÞ ¼
2

	

Z 1

0

~MM00
1 ð!Þ cosðwtÞ

ð!þ ~MM0
1ð!ÞÞ

2
þ ð ~MM00

1 ð!ÞÞ
2
d!, ð15Þ

where ~MM0
1 and

~MM00
1 are real and imaginary parts of Fourier–Laplace transform of M1(t)

and are, respectively, given as

~MM0
1ð!Þ ¼ ��1ð1þ �Þ1=ð�þ1Þ

Z 1

0

sinð!tÞ

ð1þ � coshðktÞÞ1=ð�þ1Þ
dt, ð16Þ

and

~MM00
1 ð!Þ ¼ �1ð1þ �Þ1=ð�þ1Þ

Z 1

0

cosð!tÞ

ð1þ � coshðktÞÞ1=ð�þ1Þ
dt: ð17Þ

The Green–Kubo expression for the self-diffusion coefficients can be written in terms of
zero frequency Fourier–Laplace transform of M1(t) as

D ¼
kBT

m

1

~MM00
1 ð0Þ

: ð18Þ

We calculate ~MM00
1 ð0Þ from Eq. (17), the expression thus obtained for self-diffusion

coefficients is given by

D ¼
kBT

m

k

I �1ð1þ �Þ1=ð�þ1Þ
, ð19Þ

where

I ¼

Z 1

0

ð1þ � coshðxÞÞ�1=ð�þ1Þdx,

and kB is Boltzmann constant.
In order to calculate shear viscosity, � and thermal conductivity, � we follow the

same procedure but at one step lower than in the case diffusion coefficients. We now
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apply conditions given by Eqs. (5) and (7) at Eq. (2) instead of at Eq. (3). This is due to
the fact that sum-rules of TSC and ECD functions are known only up to fourth order.
Thus we obtain an expression of � and � given as

� ¼
n �0ð1þ �Þ1=ð�þ1ÞI

k kB T
, ð20Þ

and

� ¼
n �0ð1þ �Þ1=ð�þ1ÞI

k kB T2
, ð21Þ

where � and k are now given as

� ¼
�1

B� �1ð�þ 2Þ
,

k ¼ ð�þ 1ÞðB� �1ð�þ 1ÞÞ½ �
1=2,

with

B ¼
�1ð�þ 2Þð�þ 3Þ � �2

ð�þ 1Þ
:

We shall use these expressions to calculate shear viscosity and thermal conductivity of
LJ fluids.

3. RESULTS AND DISCUSSION

In order to study the multifarious advantages of the MF derived in the present work, we
have investigated time development of VACF and transport coefficients of LJ fluids.
In addition to the fact that present MF satisfies exactly the first six sum-rules, it has
special characteristic of presence of a parameter �, which gives us freedom to study
the behaviour of VACF for different values of �. The results obtained for VACF for
�¼ 0.1, 1.0, 2.0, 5.0 and 10.0 are shown in Fig. 1 near the triple point of LJ fluids
(n*¼ n
3¼ 0.85 and T*¼ kBT/�¼ 0.778, where 
 and � are the parameters of LJ
potential). The MD results are also depicted in Fig. 1 as solid circles. It can be seen
from the figure that time development of C(t) varies significantly with variation in �.
However, short time behaviour is essentially same as guided by the sum-rules. The
self-diffusion coefficient D*(¼D(m/�
2)1/2) which is area under the curve for �¼ 0.1,
1.0, 2.0, 5.0 and 10.0 are, respectively, 0.0444, 0.0429, 0.0407, 0.0355 and 0.0322. The
MD value of D* is 0.0335. Thus we see that the effect of � on self diffusion is not as
significant as in the variation of C(t).

We have also studied shear viscosity and thermal conductivity by using expressions
(20) and (21). The results obtained for shear viscosity, �*(¼ �
2(m�)�1/2) and thermal
conductivity, �*(¼ (�
2/kB)(m/�)1/2) at few thermodynamic states are shown in Figs. 2
and 3, respectively along with MD results. It is found that our results are reasonably
good for �¼ 3.
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FIGURE 1 Variation in C(t) with t*¼ t(�/m
2)1/2 for different values of �. Solid circles represent the MD
results. Dotted line, dashed line, solid line, dash dot line and open circles represent the variation of C(t) for
�¼ 0.1, 1.0, 2.0, 5.0 and 10.0 respectively.

FIGURE 2 Variation in shear viscosity, �* with density, n*. Solid line represents our results and solid
circles represent the MD results at T*¼ 1.06. Dashed line represents our results and open circles are MD
results at T*¼ 1.84.
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Thus we see that the MF presented here has advantage of an additional parameter �,
which effects intermediate and long time behaviour of the time evolution of a TCF.
Such a model is expected to be more useful for investigating line shape of coherent
and incoherent scattering functions of fluids.
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